

Growth in coupled multiplicative stochastic processes

International Workshop **The Physics Approach to Risk**: Agent-Based Models and Networks

Jan Lorenz

Chair of Systems Design

October 27,2008

Growth in coupled multiplicative stochastic processes	Jan Lorenz	Zürich	October 27,2008	2 / 16
Swiss COST P10 Project: Failure Risk Propagation in	Economic and Suppl	y Networks		

2 Growth in Coupled Multiplicative Stochastic Processes

Growth in coupled multiplicative stochastic processes Jan Lorenz Zürich October 27,2008 3 / 16 — Swiss COST P10 Project: Failure Risk Propagation in Economic and Supply Networks

Failure Risk Propagation in Economic and Supply Networks¹

3 Parts:

- Fragility dynamics with trend persistence
 - Result: Non-monotonous impact of link density
- **@** Growth in coupled multiplicative stochastic processes
- Oascades in credit and supply networks
 - In preparation

¹Chair of Systems Design (Prof. Schweitzer, Stefano Battiston) and Institute for Operations Research (Prof. Lüthi, Marco Laumanns), ETH Zurich

Less volatility, higher failure risk?²

 $^2 \, {\rm Jan}$ Lorenz, Stefano Battiston, Networks and Heterogeneous Media, 2008

Ch

sche Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

Growth in coupled multiplicative stochastic processes Jan Lorenz Zürich October 27,2008 5 / 16 — Swiss COST P10 Project: Failure Risk Propagation in Economic and Supply Networks

Local optimum explained by stochastic process

 Scaling of displacement for Gaussian Random Walk (GRW) and Persistent Random Walk (PRW)

$$\phi(t+1) = \phi(t) + \underbrace{\sigma\xi(t)}_{\text{diffusive scaling}} + \underbrace{\alpha \text{trend}}_{\text{ballistic} \to \text{ diffusive}}$$

• GRW dominates for $\frac{\alpha}{\sigma} \to 0$, PRW for $\frac{\alpha}{\sigma} \to \infty$

Growth in coupled multiplicative stochastic processes	Jan Lorenz	Zürich	October 27,2008	6 / 16
Growth in Coupled Multiplicative Stochastic Processes				

Orowth in Coupled Multiplicative Stochastic Processes

Growth in coupled multiplicative stochastic processes	Jan Lorenz	Zürich	October 27,2008	7 / 16
Growth in Coupled Multiplicative Stochastic Processes				

Motivation

Growth is fundamental to economic (and other) development

- Many processes grow proportional to size (multiplicative growth)
 - invested money
 - knowledge or innovativeness
 - populations
- Growing entities exchange in a linear input-output manner
 - trade
 - exchange of knowledge

What is impact of combining the two on the effective growth rate?

Growth in coupled multiplicative stochastic processes	Jan Lorenz	Zürich	October 27,2008	8 / 16
Growth in Coupled Multiplicative Stochastic Processes				

In the following:

- **①** Take **knowledge** as proxy for the dynamic variable x(t)
- **2** Define simple **internal stochastic** multiplicative growth dynamics
- Opefine simple linear input-putput dynamics for a small ensemble
- Find: Even when
 - internal dynamics lead to extinction
 - input-output is lossy and leads to shrinking
 - \rightarrow The combination can imply growth
- Phase transitions positive/negative growth rates (Risk of Extinction!), regarding e.g.
 - number of firms
 - sharing rate

Growth in coupled multiplicative stochastic processes	Jan Lorenz	Zürich	October 27,2008	9 / 16
Growth in Coupled Multiplicative Stochastic Processes				

Multiplicative stochastic knowledge production

- The knowledge of a firm to be intially $\boldsymbol{x}(0) = 1$
- There is a **positive random variable** for the growth rate η
- Dynamics take place in discrete time as

$$x(t+1) = \eta(t)x(t)$$

• As example p success rate, r loss rate, b gain rate,

$$\eta_{r,b,p}(t) = \begin{cases} 1+b & \text{with probability } p, \\ 1-r & \text{with probability } 1-p. \end{cases}$$

• Let's assume: $\langle \eta_{r,b,p} \rangle > 1$ because of hard work/knowledge management/optimism

Growth in coupled multiplicative stochastic processes	Jan Lorenz	Zürich	October 27,2008	10 / 16
Growth in Coupled Multiplicative Stochastic Processes				

Multiplicative stochastic process $x(t) = \eta(t)x(t)$

- In general (for $\log \eta$ with finite variance)
 - ► The central limit theorem for $\log x(t+1) = \log \eta(t) + \log x(t)$ implies for large t that x(t) is close to **log-normal** distributed, with cdf and pdf

with $\mu_{\log \eta} = \langle \log \eta \rangle$, $\sigma_{\log \eta}^2 = \langle (\log \eta)^2 \rangle - \langle \log \eta \rangle^2$ For $\mu_{\log \eta} < 0$: Extinction! (every quantile $\rightarrow 0$ with $t \rightarrow \infty$)

• For $\eta_{p,r,b}$

$$\langle \eta_{p,r,b} \rangle = p(1+b) + (1-p)(1-r)$$
$$\langle \log \eta_{p,r,b} \rangle = p \log(1+b) + (1-p) \log(1-r)$$

Chair of Systems Design http://www.sg.ethz.ch/

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

	Lancin	October 27,2000	11 / 10
Growth in Coupled Multiplicative Stochastic Processes			

Behavior of $x(t+1) = \eta_{p,r,b}x(t)$

Growth in coupled multiplicative stochastic processes	Jan Lorenz	Zürich	October 27,2008	12 / 16
Growth in Coupled Multiplicative Stochastic Processes				

Input-output knowledge sharing

- Ensemble of n firms, with knowledge $x(0) \in \mathbb{R}_{>0}^n$
- Nonnegative **input-output matrix** A, a_{ij} is the fraction of knowledge *i* receives from *j*
- Dynamics

$$x(t+1) = Ax(t) = A^t x(0)$$

• As example s keep self rate, d loss rate for shared

$$A_{s,d} = \begin{bmatrix} s & \frac{(1-s)(1-d)}{n-1} & \dots & \frac{(1-s)(1-d)}{n-1} \\ \frac{(1-s)(1-d)}{n-1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \frac{(1-s)(1-d)}{n-1} & \dots & \frac{(1-s)(1-d)}{n-1} \\ \end{bmatrix}$$

Growth in coupled multiplicative stochastic processes	Jan Lorenz	Zürich	October 27,2008	13 / 16
Growth in Coupled Multiplicative Stochastic Processes				

Lossy knowledge sharing

• For
$$n = 3$$
, $s = 0.7$, $d = 0.2$

• Spectral radius $\rho(A_{s,d}) = 1 - d(1-s) = 0.94$

• For d > 0, s > 0 Extinction!

Growth in coupled multiplicative stochastic processes	Jan Lorenz	Zürich	October 27,2008	14 / 16
Growth in Coupled Multiplicative Stochastic Processes				

Combination 1: Sharing of knowledge

For
$$s = 0.7, d = 0.2, p = 0.4, r = 0.6, b = 1.8$$

- $\eta_{p,r,b}(t)$ now *n*-dim vector of iid random variables
- Knowledge shared by input-output matrix after production

$$x(t+1) = A_{s,d} \left(\eta_{p,r,b}(t) \bullet x(t) \right)$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Growth in coupled multiplicative stochastic processes	Jan Lorenz	Zürich	October 27,2008	15 / 16
Growth in Coupled Multiplicative Stochastic Processes				

Combination 2: Sharing of potential

For s = 0.7, d = 0.2, p = 0.4, r = 0.6, b = 1.8

- $\eta_{p,r,b}(t)$ now *n*-dim vector of iid random variables
- Random growth rates are shared by input-output matrix

$$x(t+1) = (A_{s,d} \ \eta_{p,r,b}(t)) \bullet x(t)$$

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Growth in coupled multiplicative stochastic processes	Jan Lorenz	Zürich	October 27,2008	16 / 16
Growth in Coupled Multiplicative Stochastic Processes				

Phase transitions

For d = 0.2, p = 0.4, r = 0.6, b = 1.8

- Intermediate keep self rate induces growth
- More firms can induce growth
- For 'potential': growth rate = $\exp\left\langle \log(s\eta + \sum_{i=1}^{n-1} \frac{(1-s)(1-s)}{n-1}\eta) \right\rangle$

Chair of Systems Design http://www.sg.ethz.ch/

che Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich